Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1971). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1088). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Bursten, B. E., Cotton, F. A., Hall, M. B. \& Najjar, R. C. (1982). Inorg. Chem. 21, 302-307.
Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.
Cotton, F. A., Dori, Z., Llusar, R. \& Schwotzer, W. (1985). J. Am. Chem. Soc. 107, 6734-6735.
Cotton, F. A., Llusar, R., Marler, D. O., Schwotzer, W. \& Dori, Z. (1985). Inorg. Chim. Acta, 102, L25-27.

Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 838-840
(meso-4,8-Diaza-3,9-dimethyl-6,6-trimethyleneundecane-2,10-dione dioximato- $\left.N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right)$ oxotechnetium(V), $\left[\mathrm{TcO}\left(\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]$

Chang-Shu Tsai, ${ }^{a}$ Tian-Huey Lu, ${ }^{b} *$ Janne-Yı Duh a and Si-Jung Yeh ${ }^{a}$
${ }^{a}$ Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, and ${ }^{b}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

(Received I2 June 1995; accepted 12 October 1995)

Abstract

The title compound was synthesized and analyzed by X-ray diffraction, in addition to IR, NMR, visible-UV and mass spectral studies. The coordination geometry about the Tc^{\vee} atom is five-coordinate square pyramidal, with four N atoms in equatorial positions and an O atom in the axial position. The $\mathrm{Tc}=\mathrm{O}$ double-bond distance is $1.664(5) \AA$. The two amide $\mathrm{Tc}-\mathrm{N}$ bond lengths are shorter than the two oxime $\mathrm{Tc}-\mathrm{N}$ bond lengths. The central six-membered ring has a boat conformation with the Tc-bonded O atom 'hanging' above. The

intramolecular hydrogen-bond length between the two O atoms of the oxime groups is 2.432 (9) \AA. The cyclobutyl C atoms are, more or less, in a square plane.

Comment

A large number of ${ }^{99} \mathrm{TcO}$-tetradentate amine oxime complexes have been shown to be neutral, lipophilic and able to cross the intact blood-brain barrier (Troutner, Volkert, Hoffman \& Holmes, 1984; Volkert, Hoffman, Seger, Troutner \& Holmes, 1984; Jurisson et al., 1986, 1987). Of these, HM-PAO (3,6,6,9-tetramethyl-4,8-di-azaundecane-2,10-dione dioxime), the main component of Ceretec ${ }^{\mathrm{TM}}$ (Amersham Inc., England), has been used widely in nuclear medicine for efficacious cerebral perfusion imaging. However, it has been realized that there is a vital defect regarding in vitro instability (Hung, Corlija, Volkert \& Holmes, 1988). Recently, another potential brain-imaging agent, CB-PAO (4,8-diaza-3,9-dimethyl-6,6-trimethyleneundecane-2,10-dione dioxime) was proposed (Colombo et al., 1989). ${ }^{99 m} \mathrm{Tc}-\mathrm{CB}-\mathrm{PAO}$ showed higher in vitro stability and lipophilicity than ${ }^{99 m} \mathrm{Tc}$-HM-PAO (Bacciottini et al., 1990). For a better understanding of these facts, it is of great interest to study the coordination pattern of the ${ }^{99} \mathrm{Tc}-\mathrm{CB}-\mathrm{PAO}$ crystal structure. This is the first time that a single crystal of a Tc complex of the meso-CB-PAO isomer, (I), has been isolated and the chemical bonding of Tc with CB-PAO examined.

X-ray crystallographic analysis showed the title crystal to consist of a mononuclear Tc complex. By referring to the $\mathrm{N}-\mathrm{Tc}-\mathrm{N}$ and $\mathrm{O}-\mathrm{Tc}-\mathrm{N}$ angles in Table 2 , it can be seen that the coordination geometry about the Tc^{\vee} ion is five-coordinate distorted square pyramidal, with an O atom at the apex and four N atoms in the basal plane. The geometric parameters of $\mathrm{TcN}_{4} \mathrm{O}$ in the present structure are comparable with those in [$\mathrm{Tc}^{\mathrm{V}} \mathrm{O}($ pnao- 3 H$)$] [pnao-3H is $3,3^{\prime}$-(1,3-propanediyldi-imino)bis(3-methyl-2-butanone oximato) (Fair, Troutner, Schlemper, Murmann \& Hoppe, 1984)]. The $\mathrm{Tc}=\mathrm{O}$ bond distance of $1.664(5) \AA$ is somewhat shorter, compared with the values 1.670 (4)-1.682(5) \AA for mono(oxo)technetium(V)-tetradentate propylene amine oxime derivatives (Fair et al., 1984; Jurisson et al., 1986, 1987). The IR spectrum showed the $\mathrm{Tc}=0$ stretch at $931 \mathrm{~cm}^{-1}$. This is at the high energy end of the

Acta Crustallographica Section C
ISSN 0108-2701 $\widehat{C} 1996$
range observed for similar mono(oxo)technetium species [908-934 cm ${ }^{-1}$ (Fair et al., 1984; Jurisson et al., 1986, 1987)].

The four basal N atoms are coplanar to within 0.009 (10) \AA, with the Tc atom lying 0.683 (3) \AA above their least-squares plane. The N -bonded C atoms are coplanar within 0.04 (1) \AA and intersect the basal N_{4} plane at an angle of $1.3(2)^{\circ}$. The plane formed by atoms $\mathrm{C} 11, \mathrm{C} 12$ and C13 is almost perpendicular [90.1 (5) ${ }^{\circ}$] to that formed by the cyclobutyl C atoms. The cyclobutyl $\mathrm{C}-\mathrm{C}$ bond lengths range from 1.518 (16) to 1.545 (12) \AA and their bond angles range from 88.7 (6) to $90.2(7)^{\circ}$. The central six-membered ring containing the propylene group has a boat conformation. The monomeric TcO-meso-CB-PAO complex has apparently a boat form only, but dimeric TcO-meso-HM-PAO has two kinds of conformation, i.e. boat and chair forms (Jurisson et al., 1986). The two amine $\mathrm{Tc}-\mathrm{N}$ bond lengths are 1.917 (6) \AA, which are shorter than the two oxime $\mathrm{Tc}-\mathrm{N}$ bond lengths [2.075 (6) and 2.087 (7) \AA]. The visible-UV spectrum exhibited an intense band at ca 294 nm , which was attributed to a ligand-to-metal charge-transfer transition, with a shoulder at $c a 356 \mathrm{~nm}$. The angles $\mathrm{Tc}-\mathrm{N} 3-\mathrm{C} 3$ and $\mathrm{Tc}-\mathrm{N} 4-\mathrm{C} 4$ are 119.3 (5) and $117.3(5)^{\circ}$, respectively. The amine oxime ligand loses two amine protons and one oxime proton on coordination, resulting in a neutral complex with an intramolecular hydrogen bond [2.432 (9) \AA A between the two O atoms of the oxime groups.

Fig. 1. A perspective view of the title molecule showing the atomnumbering scheme and excluding the H atoms attached to the outer C atoms. The displacement ellipsoids are drawn at the 50% probability level (SHELXTL-Plus; Sheldrick, 1986).

Experimental

The ligand 4,8-diaza-3,9-dimethyl-6,6-trimethyleneundecane-2,10-dione dioxime (CB-PAO) was synthesized according
to the method described in the literature (Deutsch, 1990). Fractional crystallization from acetonitrile and ethyl acetate (Neirinckx et al., 1987) provided the meso diastereoisomer (yield 35%, m.p. $428-429 \mathrm{~K}$). Stereoisomeric purity was confirmed using ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO). Because of the symmetry, the three cyclobutyl CH_{2} groups of the meso isomer yield three ${ }^{13} \mathrm{C}$ NMR signals (at ca 15.182, 28.096 and 28.266 p.p.m.), but only two signals for the d, l isomer. ${ }^{99} \mathrm{TcO}-$ meso-CB-PAO was prepared by the reduction of pertechnetate with stannous ion in the presence of ligand (Jurisson et al., 1986). Analysis: calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Tc} \mathrm{C} 42.42, \mathrm{H}$ $6.31, \mathrm{~N}$ 14.14\%; found C $42.40, \mathrm{H} 6.41, \mathrm{~N} 14.05 \%$. FABMS spectrum (positive ion mode): 397 a.m.u. for $(M+1)^{+}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.4766(6 \mathrm{H}, d, \mathrm{Me}), 2.2560(6 \mathrm{H}, s, \mathrm{Me})$, 3.1243 and $3.5674\left(4 \mathrm{H}, d, \mathrm{CH}_{2} \mathrm{~N}\right), 4.3161$ p.p.m. $(2 \mathrm{H}, q, \mathrm{CH})$.

Crystal data

$\left[\mathrm{TcO}\left(\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]$
$M_{r}=395.37$
Monoclinic
$P 2_{1} / c$
$a=7.4275(20) \AA$
$b=18.2382(24) \AA$
$c=12.4692(14) \AA$
$\beta=90.743(16)^{\circ}$
$V=1689.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (North, Phillips \& Mathews, 1968) $T_{\text {min }}=0.912, T_{\text {max }}=$ 0.999

4694 measured reflections
2199 independent reflections

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=7.3-16.1^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=298$ (3) K
Long parallelepiped
$0.50 \times 0.31 \times 0.25 \mathrm{~mm}$ Dark red

2045 observed reflections

$$
[I>2.5 \sigma(I)]
$$

$R_{\text {int }}=0.012$
$\theta_{\text {max }}=22.5^{\circ}$
$h=-7 \rightarrow 7$
$k=0 \rightarrow 19$
$l=0 \rightarrow 13$
3 standard reflections frequency: 60 min intensity decay: 1.5%

Refinement

Refinement on F
$R=0.032$
$w R=0.051$
$S=2.02$
2045 reflections
225 parameters
Only H-atom U 's refined
Unit weights applied
$(\Delta / \sigma)_{\max }=0.02$
$\Delta \rho_{\max }=0.52 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.63 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: secondary
Extinction coefficient: 0.195 (18)

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=$			$\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.
x	y	z	$B_{\text {eq }}$
$0.50077(8)$	$0.59648(3)$	$0.22510(5)$	$2.96(3)$
$0.2250(7)$	$0.4917(3)$	$0.1303(4)$	$4.3(2)$
$0.3796(8)$	$0.4445(3)$	$0.2890(5)$	$5.6(3)$
$0.3750(7)$	$0.6509(3)$	$0.3006(4)$	$4.3(2)$

N1	$0.3395(8)$	$0.5473(3)$	$0.1086(5)$	$3.5(3)$
N2	$0.5122(8)$	$0.4933(4)$	$0.2972(5)$	$4.3(3)$
N3	$0.5748(8)$	$0.6454(3)$	$0.0969(5)$	$3.4(3)$
N4	$0.7448(8)$	$0.5933(3)$	$0.2768(5)$	$3.4(3)$
C1	$0.3367(9)$	$0.5765(4)$	$0.0144(6)$	$3.4(3)$
C2	$0.6530(11)$	$0.4792(5)$	$0.3552(6)$	$4.5(4)$
C3	$0.4677(10)$	$0.6365(4)$	$-0.0017(6)$	$3.5(3)$
C4	$0.7927(10)$	$0.5344(5)$	$0.3554(6)$	$4.4(4)$
C5	$0.2096(11)$	$0.5487(6)$	$-0.0712(7)$	$5.2(5)$
C6	$0.6754(13)$	$0.4069(6)$	$0.4134(9)$	$6.3(5)$
C7	$0.3715(13)$	$0.7070(5)$	$-0.0354(8)$	$5.3(4)$
C10	$0.8162(15)$	$0.5732(7)$	$0.4687(7)$	$6.9(6)$
C11	$0.7413(11)$	$0.6850(5)$	$0.0792(7)$	$4.6(4)$
C12	$0.8977(10)$	$0.6356(5)$	$0.2408(7)$	$4.4(4)$
C13	$0.8403(10)$	$0.7041(5)$	$0.1821(7)$	$4.1(4)$
C14	$0.9989(12)$	$0.7578(5)$	$0.1671(9)$	$5.6(5)$
C15	$0.7507(12)$	$0.7614(5)$	$0.2547(8)$	$5.0(4)$
C16	$0.9218(14)$	$0.8081(7)$	$0.2519(12)$	$8.1(7)$

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Tc}-\mathrm{O} 3$	1.664 (5)	$\mathrm{Cl}-\mathrm{C} 3$	1.479 (11)
$\mathrm{Tc}-\mathrm{N} 1$	2.075 (6)	$\mathrm{Cl}-\mathrm{C} 5$	1.504 (10)
$\mathrm{Tc}-\mathrm{N} 2$	2.087 (7)	C2-C4	1.446 (13)
$\mathrm{Tc}-\mathrm{N} 3$	1.917 (6)	C2-C6	1.512 (12)
$\mathrm{Tc}-\mathrm{N} 4$	1.917 (6)	C3-C7	1.528 (11)
$\mathrm{Ol}-\mathrm{Nl}$	1.353 (8)	C4-C10	1.588 (13)
$\mathrm{O} 2-\mathrm{N} 2$	1.330 (9)	$\mathrm{Cll-Cl3}$	1.511 (12)
$\mathrm{N} 1-\mathrm{Cl}$	1.290 (10)	C12-Cl3	1.507 (12)
$\mathrm{N} 2-\mathrm{C} 2$	1.290 (10)	C13-C14	1.545 (12)
N3-C3	1.465 (9)	C13-C15	1.539 (12)
N3-C11	1.452 (10)	C14-C16	1.518 (16)
N4-C4	1.493 (10)	C15-C16	1.531 (14)
N4-C12	1.449 (10)		
$\mathrm{O} 3-\mathrm{Tc}-\mathrm{Nl}$	109.4 (2)	$\mathrm{Nl}-\mathrm{Cl}-\mathrm{C} 3$	115.2 (6)
$\mathrm{O} 3-\mathrm{Tc}-\mathrm{N} 2$	108.3 (3)	C3-C1-C5	124.1 (7)
$\mathrm{O} 3-\mathrm{Tc}-\mathrm{N} 3$	111.3 (3)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 4$	116.0 (7)
$\mathrm{O} 3-\mathrm{Tc}-\mathrm{N} 4$	111.3 (3)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 6$	121.8 (8)
$\mathrm{N} 1-\mathrm{Tc}-\mathrm{N} 2$	86.1 (3)	C4-C2-C6	122.1 (7)
$\mathrm{N} 1-\mathrm{Tc}-\mathrm{N} 3$	77.7 (2)	N3-C3-Cl	108.6 (6)
$\mathrm{N} 1-\mathrm{Tc}-\mathrm{N} 4$	139.2 (2)	N3-C3-C7	112.6 (7)
$\mathrm{N} 2-\mathrm{Tc}-\mathrm{N} 3$	140.2 (3)	$\mathrm{Cl}-\mathrm{C} 3-\mathrm{C} 7$	110.7 (6)
$\mathrm{N} 2-\mathrm{Tc}-\mathrm{N} 4$	78.2 (3)	N4-C4-C2	109.6 (6)
$\mathrm{N} 3-\mathrm{Tc}-\mathrm{N} 4$	90.8 (3)	N4-C4-C10	106.6 (7)
$\mathrm{Tc}-\mathrm{Nl}-\mathrm{Ol}$	122.9 (4)	C2-C4-C10	112.4 (7)
$\mathrm{Tc}-\mathrm{Nl}-\mathrm{Cl}$	117.5 (5)	N3-C11-C13	113.1 (7)
$\mathrm{Ol}-\mathrm{N} 1-\mathrm{Cl}$	119.2 (6)	N4-C12-Cl3	112.0 (6)
$\mathrm{Tc}-\mathrm{N} 2-\mathrm{O} 2$	123.0 (5)	$\mathrm{Cl1}-\mathrm{Cl3}-\mathrm{Cl2}$	110.7 (7)
$\mathrm{Tc}-\mathrm{N} 2-\mathrm{C} 2$	116.7 (6)	$\mathrm{C11}-\mathrm{Cl3-C14}$	113.9 (7)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2$	120.2 (7)	C11-C13-C15	116.5 (7)
$\mathrm{Tc}-\mathrm{N} 3-\mathrm{C} 3$	119.3 (5)	C12-C13-C14	111.9 (7)
Tc-N3-Cll	127.8 (5)	C12-C13-C15	113.5 (7)
C3-N3-C11	112.5 (6)	C14-C13-C15	88.7 (6)
$\mathrm{Tc}-\mathrm{N} 4-\mathrm{C} 4$	117.3 (5)	C13-C14-C16	90.2 (7)
$\mathrm{Tc}-\mathrm{N} 4-\mathrm{C} 12$	128.4 (5)	C13-C15-C16	89.9 (7)
C4-N4-C12	113.9 (6)	C14-C16-C15	90.0 (7)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 5$	120.7 (7)		

The structure was solved by Patterson methods and Fourier synthesis, and refined by full-matrix least squares. H atoms were located by a difference Fourier method and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX. Program(s) used to refine structure: NRCVAX. Molecular graphics: SHELXTL-Plus (Sheldrick, 1986). Software used to prepare material for publication: NRCVAX.

The authors thank the National Science Council for support under grants NSC 84-2112-M007-019 and NSC 84-2113-M007-027. They are also indebted to Ms ShuFang Tung for collecting the X-ray diffraction data.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: KH1061). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Bacciottini, L., Lunghi, F., Pupi, A., Bonino, C., Formiconi, A. R., De Cristofaro, M. T. R., Petti, A. R. M. \& Meldolesi, U. (1990). Eur. J. Nucl. Med. 17, 242-247.
Colombo, F., Lunghi, F., Deleide, G., Matarrese, M., Bonino, C., Jang, L. K., Belletire, J., Fazio, F. \& Deutsch, E. (1989). J. Nucl. Med. 30, 742. (Abstract.)
Deutsch, E. (1990). US Patent No. 4895960.
Enraf-Nonius (1989). CAD-4 Software. Fortran Version 5. EnrafNonius, Delft, The Netherlands.
Fair, C. K., Troutner, D. E., Schlemper, E. O., Murmann, R. K. \& Hoppe, M. L. (1984). Acta Crrst. C40, 1544-1546.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hung, J. C., Corlija, M., Volkert, W. A. \& Holmes, R. A. (1988). J. Nucl. Med. 29, 1568-1576.
Jurisson, S., Aston, K., Fair, C. K., Schlemper, E. O., Sharp, P. R. \& Troutner, D. E. (1987). Inorg. Chem. 26, 3576-3582.
Jurisson, S., Schlemper, E. O., Troutner, D. E., Canning, L. R., Nowotnik, D. P. \& Neirinckx, R. D. (1986). Inorg. Chem. 25, 543549.

Neirinckx, R. D., Canning, L. R., Piper, I. M., Nowotnik, D. P., Pickett, R. D., Holmes, R. A., Volkert, W. A., Forster, A. M., Weisner, P. S., Marriott, J. A. \& Chaplin, S. B. (1987). J. Nucl. Med. 28, 191-202.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1986). SHELXTL-Plus. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Troutner, D. E., Volkert, W. A.. Hoffman, T. J. \& Holmes, R. A. (1984). Int. J. Appl. Radiat. Isotop. 5, 467-470.

Volkert, W. A., Hoffman, T. J., Seger, R. M., Troutner, D. E. \& Holmes, R. A. (1984). Eur. J. Nucl. Med. 9, 511-516.

Acta Cryst. (1996). C52, 840-842
$\left[\mathrm{Fe}_{2}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)_{4}(\mu-\mathrm{H})\left(\mu-\mathrm{SiCl}_{2}\right)\right]-$ $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{SiCl}_{3}\right)\right]$

Richard S. Simons and Claire A. Tessier
Department of Chemistry, University of Akron, Akron, Ohio 44325-3601, USA

(Received IO November 1994; accepted 9 October 1995)

Abstract

The structure of tetracarbonyl- μ-(dichlorosilylene)-μ-hydrido-tetrakis(trimethylphosphine)diiron(1+) tetracarbonyl(trichlorosilyl)ferrate ($1-$), has been determined at 119 K . The cation has an $\mathrm{Fe}-\mathrm{Fe}$ distance of $2.947(2) \AA$ and an average $\mathrm{Fe}-\mathrm{Si}$ distance of

